Дмитрий Курошев
S:14:28:08 26.10
R:14:28:09 26.10
Билет 23, задача 4 - это теория, обычно вы сами из лекций можете взять... но вот инфа впринципе основная
Если в цепи действует один или несколько источников с несинусоидальными ЭДС, то её расчет распадается на три этапа.
1. Разложение ЭДС источников на гармонические составляющие. Как это делать рассмотрено выше.
2. Применение принципа наложения и расчет токов и напряжений в цепи от действия каждой составляющей ЭДС в отдельности.
3. Совместное рассмотрение (суммирование) решений, полученных в п.2.
Суммирование составляющих в общем виде чаще всего затруднено и не всегда необходимо, так как на основании гармонических составляющих можно судить как о форме кривой, так и об основных величинах, характеризующих её.
Основным этапом является второй. Если несинусоидальная ЭДС представлена рядом Фурье, то такой источник можно рассматривать как последовательное соединение источника постоянной ЭДС и источников синусоидальных ЭДС с различными частотами (рис.6.10). Применяя принцип наложения и рассматривая действие каждой ЭДС в отдельности, можно определить составляющие токов во всех ветвях цепи. Пусть Eo создает Io, e1 - i1, e2 - i2 и т.д. Тогда фактический ток i=Io+i1+i2+···. Следовательно, расчет цепи несинусоидального тока сводится к решению одной задачи с постоянной ЭДС и ряда задач с синусоидальными ЭДС. При решении каждой из этих задач необходимо учитывать, что для различных частот индуктивное и емкостное сопротивления неодинаковы. Индуктивное сопротивление прямо пропорционально частоте, поэтому оно для k–й гармоники xLk=kωL=kxL1, т.е. для k–й гармоники оно в k раз больше, чем для первой. Емкостное сопротивление обратно пропорционально частоте, поэтому оно для k–й гармоники xСk=1/kωС=xС1/k, т.е. для k–й гармоники оно в k раз меньше, чем для первой. Активное сопротивление в принципе тоже зависит от частоты из-за поверхностного эффекта, однако при малых сечениях проводников и при невысоких частотах поверхностный эффект практически отсутствует и допустимо считать, что активное сопротивление для всех гармоник одинаково.